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Executive Summary
1. The growing threats of extreme weather and climate tipping 

points create risks to financial markets in the next five to ten 
years that current climate scenarios do not capture.1

2. We introduce a class of stochastic sector-specific damage 
functions to capture the probabilities of significant events, 
notably extreme weather and climate tipping points.2 Using 
these models will show material climate-related risks for in-
surance and pension fund asset allocations in the next five 
to ten years. 

3. The stochastic character of the damage functions enables 
the calculations of climate stresses at various percentile lev-
els rather than just a single deterministic path as is currently 
the case in most regulatory stress tests. 

4. EIOPA recently pointed out the need to consider the inter-
action between physical and transition risks.3 We introduce 
feedback between physical and transition risk, which cap-
tures our belief that carbon abatement on a significant scale 
will not happen before more significant physical damage 
occurs. For instance, we recognize that there is consider-
able current transition energy investment in the US, with a 
2021 total for US transition energy investment of over $110B 
(mainly in renewable energy and electric vehicles).4 However, 
the value of assets potentially stranded by climate-related 
legislation and regulation could be as high as $14T.5 

5. We analyze the impact of the defined scenarios on various 
asset classes using Conning’s Climate Risk Analyzer™. For 
example, we show that including a scenario that incorporates 
possible climate tipping points can reduce the expected 

1 We define a tipping point as a critical threshold beyond which a system reorgan-
izes, often abruptly and irreversibly. 

2 Lontzek, T., “Stochastic integrated assessment of climate tipping points 
indicates the need for strict climate policy,” Nature Climate Change, 23 
March 2015.

3 EIOPA – Methodological Principles of Insurance Stress Testing – Climate 
Change Component, 27th January 2022. 

4 BloombergNEF, “Energy Transition Investment Trends 2022, January 2022.
5 Mercure, J., et al., “Reframing incentives for climate policy action,” Nature 

Energy, Vol.6, December 2021.

cumulative return over the next ten years for a portfolio of 
mortgage-backed securities from 9.4% to an expected loss 
of 1%, with a 5% chance of a loss of 14.8%.

6. Stochastic methods which generate a probability distribution 
of climate risk outcomes can provide a more robust way of 
understanding the “tail” of a climate risk distribution than 
can single-scenario analyses. Recent research has shown 
a growing threat of such abrupt and irreversible climate 
changes by 2030.6, 7 

Introduction
Since the Global Financial Crisis (GFC), financial stress tests and 
scenario analysis have become standard regulatory-required 
practices. These analyses, including data, models, and relatively 
short time horizons, have taken years to develop and refine. The 
growing risks of climate action failure and extreme weather are 
causing increasing concerns about potential impacts on the 
global financial system (e.g., the World Economic Forum report 
in January).8 Accordingly, there are initial actions to pilot climate 
stress testing into insurance and pensions regulatory frameworks 
in many countries.9 

The push toward including climate stress testing within the ORSA 
poses significant challenges to both regulators and insurance and 
pension undertakings. These challenges are partly due to the re-
liance on climate models and associated integrated assessment 
models (IAMs), where empirical linkages to financial instruments, 
products, and services are not well-established. The relative mis-
match between the long time horizon of climate models and the 
shorter strategic planning horizons required by the ORSA is also a 
significant additional complication. 

6 Lenton, T., et al., “Climate tipping points — too risky to bet against,” Nature, 9 
April 2020.

7 Dietz, S., “Economic impacts of tipping points in the climate system,” Proceed-
ings of the National Academy of Sciences of the United States of America, 13 
November 2021.

8 World Economic Forum, “The Global Risks Report 2022,” January 2022 lists 
climate action failure and extreme weather as the top two “most severe risks on 
a global scale over the next ten years.”

9 For example, the Bank of England and the European Central Bank conduct pilot 
projects.
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In this paper we introduce some of the major conceptual ideas 
within current climate economics models used for the calculation 
of the financial costs of physical climate risk and the transition 
to a low-carbon economy. We then propose a methodology that 
extends the current literature to consider the uncertainty in cur-
rent deterministic forecasts of climate-related financial damages, 
as well as the potential for higher-than-expected realized losses 
in the short term due to tipping-point-type events. Rather than 
treating physical and transition risk as independent, our model 
also introduces feedback between physical damages and gov-
ernment action on carbon abatement, which we consider more 
realistic given the slow progress of climate politics to date. Finally, 
we use simulations from the GEMS® Economic Scenario Gener-
ator (“GEMS”) to apply the climate scenarios to various types of 
market and credit risk exposures using the Conning Climate Risk 
Analyzer™ (“Climate Risk Analyzer”). We present a range of met-
rics and comparative distributions for the market value of several 
different asset classes under a best-estimate scenario and a sce-
nario conditioned on a particular climate change scenario

Using this model, insurance and pension firms could augment 
their current stress testing frameworks, implement climate sce-
narios broadly aligned with the current thinking of European and 
North American regulatory requirements on the ORSA, and par-
tially satisfy many other reporting standards, such as those from 
the Taskforce for Climate Related Financial Disclosures (TCFD) 
and the Principles for Responsible Investing (PRI). 

Climate Impact Modeling

Physical Risk

Physical risks arise from the physical effects of climate change 
and are perhaps more closely related to how we naturally per-
ceive climate risk. These include acute physical risks, which might 
arise from weather-related events such as storms, floods, fires, 
or heatwaves and which may damage physical property and dis-
rupt the operations of companies that we invest in. More subtle 
are chronic physical risks which manifest themselves over longer 
time horizons, such as rising sea levels, changes in temperature, 
and reduced water availability. In more detailed analyses, tertiary 
physical effects of climate change on biodiversity, soil quality, mi-
gration of people, higher incidence of conflicts, and other sources 
might also be considered.

A common approach to modeling physical climate-related risks 
is to employ a financial damage function relating global tem-
perature changes to impact on output, consumption, or other 
economic variables. The following form of the financial damage 
function for physical risks is often used as the starting point of 
these assessments.10

10 We have chosen to use the quadratic form as a basis of our model because it is 
the most commonly used and referenced function in the definition of financial 
stresses at this time. New models are becoming more focused on severe and 
worst-case outcomes, moving away from the assumption that temperatures can 
be contained within the 2- to 2.5-degree range. More research based on these 
models will be performed in the future.

Table 1 Proposed parameterizations of the quadratic dam-
age function, from Nordhaus, Howard and Sterner, and 
Kalkhuhl and Wenz.11, 12, 13

Where Δ(t) is the expected financial damage from climate-related 
physical effects at a time, t, due to changes in temperature rela-
tive to pre-industrial levels ΔTt. Table 1 shows some leading pa-
rameterizations for α1 and α2, 

Once an assessment of physical damage—typically expressed in 
terms of a fraction of GDP—is made it can be cascaded down to 
asset class or individual equity or fixed income holdings using 
some assumptions about the exposure of the asset to the physi-
cal damage.

Transition Risk

Transition risks may be described as risks that arise from the 
transition to a low-carbon economy. These might include risks 
arising from policy changes such as energy efficiency regulations 
or carbon pricing mechanisms, which in turn increase the cost 
and relative attractiveness of fossil fuels. Further, they may more 
broadly include risks arising from disruptive technologies, which 
might rapidly replace a technology that is more damaging to the 
climate. Changes in consumer habits and reputational elements 
may also be considered to fall under the “transition risk” defini-
tion.

The current methods used for quantifying the financial impacts of 
transition risk usually begin with an assumption about the future 
path of the cost of carbon. This usually involves estimating how 
much carbon taxes might need to increase over the next thirty or 
fifty years to maintain global warming below some threshold, say 
1.5° C. In this type of scenario definition, the analyst implicitly as-
sumes that governments will act in some rational way to mitigate 
the longer-term negative effects of climate change (i.e., physical 
risk). 

Given a cost-of-carbon scenario as input, a marginal abatement 
curve can be used to compute the cost of carbon abatement at 
a particular level as a fraction of GDP. The marginal abatement 
curve relates the carbon price to the emissions control rate. The 
emissions control rate is defined as the proportion of total emis-
sions that a rational player would abate at the given level of the 
carbon price. An example of a marginal abatement curve is shown 
in Figure 1 (following page).

11 Nordhaus, W. D., Sztorc, P., DICE 2013R: Introduction and User’s Manual, p.97.
12 Howard, P. H., and Sterner, T., “Few and not so far between: a meta-analysis of 

climate damage estimates.” Environmental and Resource Economics, 68(1), 
197-225. (2017).

13 Kalkuhl, M., & Wenz, L., “The Impact of Climate Conditions on Economic Pro-
duction. Evidence from a Global Panel of Regions.,” Journal of Environmental 
Economics and Management, 2020, vol. 103, issue C.

Model a1 a2

Nordhaus 0 -0.00267

Howard and Sterner 0 -0.007438

Kalkhuhl and Wenz -0.0373 -0.0009
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The marginal abatement curve assumes an equilibrium model in 
which a rational agent would have an incentive to abate a certain 
proportion of carbon emissions (x-axis) for a given carbon price 
level (y-axis). The form of the curve usually follows a power law 
assumption (typically quadratic) which is consistent with the idea 
that reducing the first x% of carbon is cheaper than eliminating 
the last y%. 

Marginal abatement curves are a useful construct because they 
relate the carbon price with the cost of abatement. For a given 
carbon price, c(t), input from a future transition risk scenario, the 
abatement cost per ton of carbon emissions can be calculated 
as the integral under the curve to c(t), as shown in Figure 1, with 
the remaining area up to an ECR of 1 (100% of emissions) repre-
senting the tax per ton of carbon emissions which must be paid. 
Given then a projection of total unabated emissions, the cost of 
abatement as a fraction of GDP can be estimated.

It should be noted that there are many sources of marginal abate-
ment curves,14, 15 as well as debate around the current cost of 
carbon. This is a possible source of uncertainty in the modeling of 
these financial risks which is worth considering.

Climate Modeling Limitations

The basis of many scenarios of financial climate risks are models 
of future global warming and the impact that this will have on 
world weather and geophysical systems. It is perhaps then worth-
while to briefly consider the limitations of these models.

Models used today for estimating climate scenarios represent 
simplified forms of the physics of a complex Earth system well 
into the future. While the models have had some successes, the 
scientific community has recognized many limitations.16 There is 
work now to develop a new generation of models to overcome 
many shortcomings.17 Among these significant limitations is the 
fact that their output is of limited near-term use by financial in-
stitutions. 

Although a new generation of climate models and IAMs will be a 
significant advance, we need not wait until this new generation is 
available to make substantial progress in analyzing the risks to 
the financial system. A collaboration of the scientific and financial 
communities is already at work to better understand the capabil-
ities and limitations of these models and to develop scenarios to 
guide a pragmatic approach to climate risk policy for regulated in-
stitutions. A key question for risk analysts should be how to under-
stand these risks in a way that is relevant on a strategic planning 
horizon. This in turn will motivate boards and key decision makers 
to follow the old adage in medicine, “First, do no harm.” However, 
“Second, do something quickly.” 

14 Cline, W. R., 2011 op. cit. Carbon Abatement Costs and Climate Change 
Finance.

15 McKinsey Sustainability, “Greenhouse gas abatement cost curves,”  
mckinsey.com.

16 Palmer, T. and Stevens, B., “The scientific challenge of understanding and es-
timating climate change,” Proceedings of the National Academy of Sciences, V 
116, No. 49, 3 December 2019.

17 Bauer, P., et al., “The digital revolution of Earth-system science,” Nature Compu-
tational Science, v 111, February 2021.

A pivotal study released by the United Nations’ Intergovernmental 
Panel on Climate Change (IPCC) in 2018 noted that CO2 emis-
sions would need to fall nearly 50% by 2030 to prevent global 
temperatures from rising more than 1.5 degrees Celsius, a goal of 
the Paris climate agreement.18 The IPCC 6th Assessment Review 
in 2021 updated this study and the Paris climate agreement to 
spur calls of urgency among climate risk advocates and others.19 
The models upon which such urgent demands for public policy 
response are based contain significant model risk. Model risk is 
associated with errors in data, methods, or assumptions used to 
generate output from analytical models used for decision-mak-
ing. Effective risk management and public policy decision-making 
must have a foundation of a sound understanding of the current 
state and limitations of climate and the IAMs.

As we have mentioned previously, the long-term nature of most 
explicitly defined climate stress tests to date makes them difficult 
to implement in practice for many financial institutions. Moreover, 
empirical linkages between typical financial and risk performance 
outcomes and climate-related outputs are not well-established. 
The existing risk models are incompatible with the scenario time 
horizon, rendering a deterministic single-scenario analysis of 
limited value for risk assessment. For these reasons and others, 
conducting stress and scenario analysis over a more extended 
period using a deterministic approach, based on only an ex-

18 IPCC, 2018: Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC 
Special Report on the impacts of global warming of 1.5°C above pre-industrial 
levels and related global greenhouse gas emission pathways, in the context of 
strengthening the global response to the threat of climate change, sustainable 
development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, 
H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. 
Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. 
Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. World Meteorological 
Organization, Geneva, Switzerland, 32 pp.

19 IPCC, 2021, “Sixth Assessment Report,” https://www.ipcc.ch/
assessment-report/ar6/

Figure 1 Example marginal abatement curve showing the calcu-
lated abatement cost and tax at the given carbon price level (red 
line). ©2022 Conning, Inc.
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pected or most likely scenario, is unreliable in understanding 
and managing a firm’s risk profile today.

Other commonly used sources of climate scenarios are those de-
veloped by entities such as the Network of Central Banks and 
Supervisors for Greening the Financial System (NGFS), which rely 
on projections extending decades into the future. The NGFS’s 
six climate scenarios characterizing the effects of transition and 
physical risks to the financial system from changes in public pol-
icy, temperature, and emissions extend to the year 2100.20 These 
climate and socioeconomic models operate on a global scale with 
a complexity and long-term horizon incompatible with the level 
of granularity required and relatively shorter-term focus of most 
portfolio risk analyses. These scenarios are also subject to much 
model risk, as is acknowledged by the NGFS in their discussion of 
climate scenario development: Modelling the GDP impacts from 
transition risk and physical risk is subject to significant uncer-
tainty.21

A recent evaluation of the world’s leading climate models shows 
that the predictions from the various models are not converging. 
The World Climate Research Program’s “Coupled Model Intercom-
parison Project” compares model projections from the world’s 
leading climate models.22 In its 6th phase (CMIP6), approximately 
100 models from organizations worldwide participated. Scien-
tists use the critical metric “Equilibrium Climate Sensitivity” (ECS) 
in comparing models. The ECS is the model output in response to 
a shock doubling the input of atmospheric CO2 concentrations. 
The climate modeling community uses this metric as a significant 
indicator of the severity of future warming. If the models were 
converging to consistent results, the differences among ECS val-
ues produced by the CMIP models would shrink. Unfortunately, 
the range of ECS values among the CMIP6 models is greater by 
45% than the range calculated by the earlier CMIP5 models.23, 24 

In his seminal article, “The Use and Misuse of Models for Climate 
Policy,” Pindyk levies a damning indictment of the current genera-
tion of IAMs, including the arbitrary parameterization and assign-
ment of model input functional forms, difficulty in understanding 
climate sensitivity impacts to the models, a lack of data relating 
to damage functions, and poor characterization of tail risk associ-
ated with climate outcomes.25  

Climate Economics Modeling Limitations

We differentiate the climate models described in the last section, 
which are intended to model the effect of changes in greenhouse 
gases on Earth’s geophysical properties (e.g., sea level or tem-

20 Network for Greening the Financial System, NGFS Climate Scenarios for central 
banks and supervisors, June 2021.

21 Ibid.
22 Wikipedia, The Free Encyclopedia, “Coupled Model Intercompari-

son Project,” (accessed May 3, 2022), https://en.wikipedia.org/wiki/
Coupled_Model_Intercomparison_Project

23 CarbonBrief, “CMIP6: the next generation of climate models explained,” carbon-
brief.org, 2 December 2019.

24 Zelinka, M., “Causes of Higher Climate Sensitivity in CMIP6 Models,” Geophysi-
cal Research Letters, 3 January 2020.

25 Pindyk, R.S., The Use and Misuse of Models for Climate Policy, Review of Envi-
ronmental Economics and Policy, 11, 1, Winter 2017, 100-114.

perature), from climate economics models which try to describe 
the impact of climate change on financial or macro-economic vari-
ables. The current modeling approaches used to quantify physical 
and transition risk which were described in prior sections 3 have 
several significant limitations which are independent of pure cli-
mate model limitations. These limitations include:

1. There is no treatment of the uncertainty of damages to GDP 
through increases in the Social Cost of Carbon (SCC), Δ. 
These uncertainties are likely to be significant, as evidenced 
by the variance in the model parameterizations shown in Ta-
ble 1 (page 2). For example, the coefficient a2 in the Howard 
and Sterner model is three times larger than the coefficient 
in the Nordhaus model and more than seven times larger 
than this coefficient in the Kalkhuhl and Wenz model.

2. There is no way of incorporating the effects of medium- to 
low-probability but high-impact events caused by tipping 
points. The above models do not include climate tipping 
points, and the above references do not discuss this topic. 
Currently to our knowledge, regulatory climate stress tests 
have also failed to address tipping points despite the poten-
tial for high impacts, albeit with low probability, in the short 
to medium term.

3. Physical and transition risk scenarios are treated inde-
pendently from one another as shown in Figure 2. To define 
a scenario, the user must provide two sets of inputs, one for 
the future temperature change and one for the future cost 

Figure 2 Representation of the process for defining physical and transition risk 
scenarios in current risk management frameworks. ©2022 Conning, Inc. 
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of carbon. More importantly, there is no feedback between 
the two when arguably transition risk should be led by phys-
ical risk (i.e., physical damages mount, causing political and 
financial incentives to increase the abatement of carbon-in-
tensive practices and mitigate future damages).

The limitations of these models, as well as the climate models 
and IAMs discussed in the last section, reduce the utility of sin-
gle-path deterministic climate scenarios for financial market cli-
mate risk analysis and strongly motivate the need for a probabi-
listic approach. Augmenting these scenarios with a distribution of 
climate risk outcomes based on current leading research on ex-
treme weather and climate tipping points is likely to significantly 
improve the utility of results. 

In the next section we propose an extended climate economics 
model which provides a viable methodology to reduce the prob-
lem of defining scenarios for financial market asset allocations to 
a functional form with interpretable parameters that can be set by 
analyzing more complex models of climate change impacts. The 
model’s output is such that insurance and pension funds could 
implement and report on the short- and medium-term effects of 
defined scenarios more quickly and easily.

An Integrated Approach to Defining Physical and 
Transition Risk Scenarios

In their 2022 paper, Methodological Principles of Insurance 
Stress Testing—Climate Change Component, EIOPA note that, 
“Physical and transition risks are interlinked and affect financial 
firms in distinct ways. The initial approaches taken by supervisors 
to better understand the impact of climate change tend to treat 
the two risks separately. The same approach is taken by the ac-
ademia where much of the existing production focuses on one 
element or the other in insulation. Although approaching the two 
risks separately might help from a theoretical and operational 
perspective, by simplifying the analysis and enhancing transpar-
ency, it neglects to understand the interplay between the two 
risks. The complex dynamic between physical and transition risks 
can generate both mitigating and mutually reinforcing effects.”26  
This further reinforces the need and regulatory demand for an 
integrated model of physical and transition risks of the type that 
we have developed.

To address this as well as some of the other limitations already 
discussed, we propose a stochastic extension that gives regula-
tors and risk analysts much broader information on the range of 
financial damages that might occur in a given climate scenario. 
Further, we suggest a simplified methodology to cascade these 
damages to investible asset classes and apply them to existing 
financial market risk frameworks. The model unifies the ap-
proaches to modeling physical and transition risks discussed 
earlier, incorporates tipping points, and allows for the range and 
probabilities of possible outcomes to be estimated.

26 EIOPA – Methodological Principles of Insurance Stress Testing – Climate 
Change Component, 27th January 2022

We start by proposing a unified model of physical and transition 
financial damages of the form:

Note that this process is similar to the standard physical damage 
function shown earlier, but the static parameter a2 is replaced 
by a stochastic process, α2(t) which scales the quadratic term in 
ΔTt. The term, φTrans(t), describes the feedback between physical 
damage and transition risk, and it will be discussed in more detail 
later. 

Several forms could be used to describe the random element 
α2(t); however, we assume that the uncertainty around the central 
assumption of the parameter is a white-noise term with a jump 
and is given by:

Where;

• a2 is a fixed parameter from one of the models shown in Ta-
ble 1,

• σ is a parameter controlling the variance of the process,

• dW(t) is a Wiener process,

• N(t) is a Poisson counter with intensity λ.ΔTν, and

• γ = N (mγ, σ2
γ) is a Gaussian random variable but could 

equally be a constant.

The variance parameter, σ, represents the uncertainty around 
the base assumption, a2. The jump process dN(t) incorporates 
low-probability high-impact events into the simulation. This pro-
cess enables us to include the possibility of tipping-point events 
that might lead to unanticipated severe losses at any temperature 
level. This simplified structure allows us to incorporate the con-
clusions of more complex models, which consider the impacts of 
tipping points from studying the geophysical processes involved. 

Note that the intensity of the jump process increases with ΔTν, 
such that the probability of tipping points increases with tempera-
ture, and the parameter ν captures the non-linearity in the likeli-
hood of such events. Due to the stochastic process driving α2(t), 
the model can produce positive outcomes for a given temperature 
change scenario. The output will always be skewed negatively by 
parameter a2, which is negative for all parameterizations of the 
damage function, and the jump process, which has a negative 
mean. Purely economic and financial market opportunities may 
result from innovation, low-tax regimes for green technology, and 
the positive economic effects of rebuilding infrastructure and 
physical assets damaged by climate-related events. However, the 
model’s primary objective is to understand worst-case outcomes 
from a market-risk perspective. A non-zero (i.e., likely minimal) 
probability of positive results should not mitigate or reduce the 
probable substantial negative impacts of global temperature 
changes on the world’s economy.
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We now describe the model of the transition term ΦTrans(t). Con-
sistent with current practice, we start with the assumption that 
increases in the cost of carbon will be the primary driver of carbon 
reduction. As we have seen, most approaches to scenario defini-
tion for transition risk assume some path for the cost of carbon 
and then compute the abatement costs based on this path. Our 
process differs because we believe physical damage will be the 
primary driver of transition risks. The propagation mechanism for 
transition risk in this framework could be from higher physical 
damage causing enough political pressure to force the implemen-
tation of carbon taxes, tariffs, or other methods for raising the 
cost of carbon. Increasing physical damages may also lead inves-
tors to pressure companies to buy more carbon credits, increas-
ing the prices and costs for some companies or sectors.

As evidenced by the last thirty years of experience, there is likely 
to be little political incentive to drive the cost of carbon higher 
until physical damage exceeds some threshold, τ. There are 
many examples that reinforce this assertion. A particularly pre-
scient one at the time of writing is the severe floods experienced 
in Germany in 2021. In large part, this event contributed to the 
Green Party increasing its number of parliamentary seats in the 
Bundestag from 67 to 118 and took the party into the ruling coa-
lition. Another example is US wildfires, where, as we will discuss 
in some more detail later, spending on wildfire mitigation lagged 
wildfire damage. However unfortunate the conclusion, it would 
seem logical that given a typical electoral cycle of 3 to 5 years, 
governments are unlikely to significantly increase the cost of en-
ergy, transport, food and other goods that rely on carbon inten-
sive practices until the incentives are obvious and compelling to 
the voting public that they rely on. The Ukraine crisis of 2022 has 
shown how intolerant the public is to rises in energy costs, which 
to date have been moderate when compared to some of the sce-
narios for the cost-of-carbon increases that would be required to 
maintain global warming within 1.5°C relative to pre-industrial 
levels.

In our model, rather than assuming governments will collectively 
act in some way which would require the user to define how the 
cost of carbon will evolve in the future, the cost-of-carbon is deter-
mined stochastically based on what the current simulated level of 
physical damage is. Under this framework, the cost of carbon (per 
ton) C(t) is given by;

 

The threshold τ is negative and physically represents human tol-
erance to climate-related financial damage. C(0) is the current 
cost of carbon, and ΔC(Δphys(t),t) is the change in the cost of 
carbon at time t, which is a function of the physical part of the 
damage function                                                      Hence, there is 
feedback between the stochastic physical damages, Δphys(t), and 
the change in the cost of carbon, ΔC(Δphys(t),t). 

We assume an equilibrium relationship between the costs 
of physical damages above the threshold τ and changes 

in the cost of carbon. The increase in the cost of carbon,  
ΔC(t) (=ΔC(Δphys(t),t)), is derived from:

Total Abatement Investment =|c.(Δphys(t) - τ)|.GDP(t)= ΔC(t).Vem(t)

Where GDP(t) is the global (but could be country or regional) GDP 
(in $), and Vem(t) is the projected level of emissions at time t if no 
abatement were to occur. The parameter c is the proportion of 
physical damage above the threshold invested by governments in 
abatement. This structure allows for feedback between physical 
damages and transition costs by calculating the value of ΔC(t) 
from the above at each point in the simulation. We further as-
sume that ΔC(t) can only increase or remain at the current level 
in the final implementation of the model (i.e., policy decisions are 
irreversible). 

Given that we have now calculated the equivalent cost of carbon 
on each stochastic path of the unified damage function, it is pos-
sible using a marginal abatement curve to quantify the transition 
term ΦTrans(t) as a fraction of GDP:

Where μ(C(t)) is the equilibrium value of the emission control rate, 
μ, corresponding to the cost of carbon C(t), and M(μ) is the mar-
ginal abatement curve. 

Note that the marginal abatement curve could be assumed to 
follow a parametric and integrable form or could be solved nu-
merically. In the studies that follow we will assume a quadratic 
form that is similar to the structure of the abatement curve that 
Nordhaus uses in his DICE model.27 Several approaches exist to 
construct marginal abatement curves, including our top-down ap-
proach and various bottom-up approaches.28 Incorporating these 
alternative methodologies into our overall framework is straight-
forward because our model only requires that the marginal abate-
ment curve is either analytically or numerically integrable. 

A final level of granularity is that, like Nordhaus, we also assume 
that abatement costs will fall as more and cheaper technological 
options become available. So, while our model assumes the cost 
of carbon will increase over time (or remain stable), the propor-
tion of carbon abated for a given carbon price will also increase. 
In our model we follow a commonly used assumption of a 2.5% 
reduction in abatement cost every five years.

Considering the initial formulation of our integrated stochastic 
damage function again, we have described all of the required ele-
ments needed to compute the function.

27 DICE 2013R: Introduction and User’s Manual, 2013. P91. Nordhaus uses k = 
bμβ where k is the abatement cost as a fraction of GDP and assumed a near 
cubic relationship with β=2.8. So the assumed marginal abatement curve is 
close to quadratic (because the integral of μ2 is 1/3.μ3).

28 Cline, W. R., 2011 op. cit. Carbon Abatement Costs and Climate Change 
Finance.
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The inputs to the model are:

1. A temperature increase scenario to derive ΔTt.

2. A projection of GDP(t) into the future.

3. A projection of Vem(t) into the future.

There are also various model parameters that the user can adjust 
in addition to these inputs. We discuss suggested values for the 
model parameters in the next section.

In comparison to Figure 2, Figure 3 shows schematically the order 
of events in the model described above. We see that the proposed 
model has taken the previously separate domains of physical and 
transition risk and unified them into a framework that allows us 
to explore the range of damage function outcomes that might be 
experienced under a given temperature increase scenario.

(λ, ν) (= 0.02, 1.632) – The jump intensity is set such that the 
probability of a jump at the 1°C level of warming is 1:50 years, 
which increases as ΔT increases (λ.ΔTν is the intensity used, and 
the probability of a jump at a given degree of warming is 1/λ.ΔTν). 
While it is difficult to estimate the likelihood of a climate tipping 
point, the IPCC judges there to be a significant probability even at 
today’s level of warming, and this would become “high” for tem-
perature rises >2° and “likely” at >4°.29 Consequently, we choose 
the parameter ν such that the probability of a jump is 1:5 years at 
the 4°C level of warming and 1:16 years at the 2°C level. 

(mγ, σ2γ) (= -0.0095, 0.0093) – We choose the jump size mean 
and standard deviation to be consistent with the conclusions by 
Dietz et al.30 We do this in order to have a geophysical basis of 
tipping points for our simulations and to capture the possible ef-
fects of a range of tipping point threats. We fix the mean jump 
size parameter at the level implied by 2.5-degree warming in this 
reference study. The jump variance value spans the range of ad-
ditional damage due to tipping points shown in that paper. This 
approach is one of the main developments within our model—
namely, incorporating the conclusions derived from a complex 
model of geophysical processes involved in tipping points within 
a simple Poisson jump process model. 

τ (= -0.04) – We chose the transition threshold, τ, which governs 
the level of physical loss (as a proportion of nominal GDP) at 
which governments will start to act on carbon prices and trigger 
the onset of significant transition risk as -4% of GDP. This choice 
is, to some extent, an expert judgment, depending as it does on 
the future demands and expectations of the voting public. In set-
ting the parameter, we have considered the costs of disasters 
since 1980,31 as shown in Figure 4.

Figure 4 Cost of natural disasters in the US as a fraction of GDP (Prepared 
by Conning, Inc. Sources: National Oceanic and Atmospheric Administration, 
National Centers for Environmental Information. (2022): U.S. Billion-Dollar 
Weather and Climate Disasters, Retrieved April 12, 2022, from https://www.
ncei.noaa.gov/access/ billions/time-series/US and ©2022 Bloomberg L.P.).32

29 Lenton,T., et al, op. cit.
30 Dietz, S., et al., op. cit.
31 NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar 

Weather and Climate Disasters (2022). https://www.ncei.noaa.gov/access/
monitoring/billions/, DOI: 10.25921/stkw-7w73

32 Ibid.

Figure 3 Representation of the process for defining physical and transition risk 
scenarios under a unified stochastic damage function. ©2022 Conning, Inc. 

Model Setup and Parameter Values

The nature of forward-looking scenario analysis of unprecedented 
events means an absence of historical data available to set the 
values of model parameters. Accordingly, we provide for the use 
of expert analysis and judgment in determining model parameters.

As part of defining scenarios, we have analyzed the current state 
of climate damages and government responses and have used 
existing research to inform the setting of model parameters. We 
discuss below the parameter values used and the reasoning be-
hind the choice for the studies that follow.

σ (= 0.0066) – We use the Howard and Sterner damage func-
tion as our central assumption and determine parameters such 
that one standard deviation of α2(t) corresponds to the distance 
between a2 for this model and the Kalkuhl and Wenz model 
(-0.007438 – -0.0009). This choice is the most severe of the ex-
isting damage function models that we use as a starting point. 
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This chart shows that we have already experienced 
natural climate-linked disasters with costs above 2% 
of GDP. We therefore conclude that it would require 
significantly higher impacts to drive policy change in 
the area of carbon price increases, and thus set the 
threshold at 2% above the worst year to date (2017).

c (= 0.623) – The parameter c governs the proportion 
of the cost beyond the threshold τ that we expect gov-
ernment and industry will spend on abatement. We 
chose this value by considering wildfire costs in the US 
and government spending on wildfire mitigation and 
management between 2011 and 2020.33 We chose 
wildfires for two reasons. First, they are an immediate 
and current example of political pressure forcing gov-
ernments to commit federal dollars to climate-related 
disasters. Second, data sets are available on both 
costs and budget allocations, which allows for inferring 
the model parameter. Using this data, we put parame-
ter c at the average ratio of government spending and 
wildfire disaster costs between 2011 and 2020. It is 
also interesting to note that the 2021 flood damage 
in Germany is currently about EUR 40bn with federal 
support packages of EUR 30bn. This data further sup-
ports the notion that c should be less than 1 and in the 
range of 50%–75%.

Choice of Climate Scenarios
Other than the model parameters, the only input to 
the model is a scenario for how temperatures might 
evolve over the time horizon of the analysis. To make 
the analysis as broad-ranging as possible, we have de-
fined scenarios for the next thirty years, encompassing 
the medium-term horizons most relevant to insurance 
firms within the context of the ORSA. There are many 
potential sources of such climate change scenarios, 
including the Representative Concentration Pathways 
(RCPs) from the Intergovernmental Panel on Climate 
Change (IPCC),34 the Network for Greening the Finan-
cial System (NGFS),35 and the Shared Socioeconomic 
Pathways.36

33 Congressional Research Service, Federal Wildfire Management: 
Ten-Year Funding Trends and Issues (FY2011-FY2020), 28 Octo-
ber 2020.

34 IPCC Data Distribution Centre, https://www.ipcc-data.org/guide-
lines/pages/glossary/glossary_r.html

35 Daniel Huppmann, Elmar Kriegler, Volker Krey, Keywan Riahi, 
Joeri Rogelj, Steven K. Rose, John Weyant, Nico Bauer, Christoph 
Bertram, Valentina Bosetti, Katherine Calvin, Jonathan Doelman, 
Laurent Drouet, Johannes Emmerling, Stefan Frank, Shinichiro 
Fujimori, David Gernaat, Arnulf Grubler, Celine Guivarch, Martin 
Haigh, Christian Holz, Gokul Iyer, Etsushi Kato, Kimon Keramidas, 
Alban Kitous, Florian Leblanc, Jing-Yu Liu, Konstantin Löffler, 
Gunnar Luderer, Adriana Marcucci, David McCollum, Silvana 
Mima, Alexander Popp, Ronald D. Sands, Fuminori Sano, Jessica 
Strefler, Junichi Tsutsui, Detlef Van Vuuren, Zoi Vrontisi, Marshall 
Wise, and Runsen Zhang. IAMC 1.5°C Scenario Explorer release 
2.0 and Data hosted by IIASA. Integrated Assessment Modeling 
Consortium & International Institute for Applied Systems Analysis, 
2018. doi: 10.22022/SR15/08-2018.15429 | url: data.ene.iia-
sa.ac.at/iamc-1.5c-explorer

36 Riahi, K. et al., “The Shared Socioeconomic Pathways and their 
energy, land use, and greenhouse gas emissions implications: An 

Figure 5 shows some of the pathways from these sources. For the analysis 
in this document, we will illustrate our process with the SSP-5 baseline sce-
nario. The SSP scenarios have the advantage of a widely used scenario nar-
rative with data available for the inputs that our model requires, in particular 
temperature change projections. We choose to focus on SSP-5 because it is 
the most severe of the scenarios defined; however, any of the SSP scenar-
ios could be incorporated with ease. The underlying narrative for SSP5 is a 
future in which societies continue to exploit fossil-fuel resources and pursue 
energy-intensive lifestyles globally, leading to continuing growth of the econ-
omy. Investments are made in technology, health, and education instead of 
alternative energy sources. In this scenario, the global population peaks in 
the 21st century and then begins to decline.

Stresses Derived for Specific Asset Classes
By using the temperature scenario under SSP-5, we can now use the model 
to simulate the stochastic damage function Δ(t). The result of this simulation 
is a distribution of possible financial damage for the next thirty years, as 
shown in Figure 6.

Figure 6 SSP5 temperature change scenario (black hatched, right axis), and the projected 
mean, 5th and 1st percentile of the distribution of damages as a proportion of GDP from the 
integrated physical and transition risks model. (Prepared by Conning, Inc. Source: IAMC 
1.5°C Scenario Explorer hosted by IIASA (release 2.0)).  

overview,” Global Environmental Change, Volume 42, January 2017, Pages 153-168.

Figure 5 Commonly used climate change scenarios equivalent to the NGFS and Shared 
Socioeconomic Pathways shown. (Prepared by Conning, Inc. Source: IAMC 1.5°C Scenario 
Explorer hosted by IIASA (release 2.0)).
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Figure 6 shows the mean, the 1st, and the 5th percentile financial 
damage as a fraction of global GDP. We will use only the mean 
and the 5th percentile as the basis of our stress test definition, 
and from now on we will refer to these as the “mean scenario” 
and “severe scenario.” The use of the 5th percentile is somewhat 
analogous to the VAR calculations widely used in risk manage-
ment.

There is no generally agreed standard or entirely robust method-
ology for cascading impacts on the social cost of carbon as a frac-
tion of GDP down to equivalent shocks in investable asset classes 
(e.g., equities or corporate bonds). Nevertheless, to make sce-
nario analysis based on our model practicable, it is essential to 
link damage functions on GDP with damage function in the finan-
cial markets. We use an autoregressive model of GDP and model 
a market portfolio in GEMS in order to cascade the mean and 
severe scenarios from Δ(t) into shocks on the market portfolio risk 
premium. We construct the market portfolio based on weightings 
from the academic literature.37 For SSP-5, we illustrate in Figure 
7, above, the transition, physical, and combined stresses to the 
market portfolio under the mean and severe scenarios over a 15-
year projection time horizon.

From here there are several possibilities to extend this to a real 
investable asset class (e.g., equities). Perhaps the simplest is to 
use historical data to determine the value of βAC to the market 
portfolio from the asset class returns RAC and the market portfolio 
returns Rmarket:

However, relying on historical data may not be the most appropri-
ate methodology, because in this case we should use an assess-

37 R. Doeswijk, T. Lam, L. Swinkels, Historical Returns of the Market Portfolio, The 
Review of Asset Pricing Studies (2019).

ment of an asset class’s exposure to shocks due to physical and 
transition risk rather than the general market movements that β 
represents. The approach we propose is to use expert judgments 
about asset classes and sectorial exposures to form different β 
values for each type of risk. These are applied to the physical and 
transition parts of the generated climate scenario shocks for the 
market portfolio and then combined into a final shock to the as-
set class under consideration. Because we have separate terms 
for physical and transition risk, we can define exposures for each 
type of risk, βphys, and βtran, for any given asset class. 

The expert judgments that we use to set these exposures include 
using the equity sector carbon betas from the CARIMA model38 
to set βtran to reflect asset class exposures to transition risks. 
Similarly, we use physical risk scores to determine the relative 
vulnerabilities of equity sectors to the physical risk shocks. For 
fixed-income asset classes, we use market β values from the 
2008 period as representative of the response of these asset 
classes to stressed market conditions and set βphys = βtran = β.

We note here that the physical and transition risk exposure will 
differ for various regulated firms based on precise exposures 
to different issuers within a sector (e.g., a coal-heavy allocation 
will have different exposures to transition risk than a renew-
ables-heavy allocation). To some extent, this is part of the model 
that individual insurers, pension funds, and financial institutions 
must set based on their own assessment of the risk profile.

For a range of 15 different asset classes covering fixed income 
and equity sectors, the mean and severe SSP-5 scenario stresses 
that we have derived are shown in Figures 8 and 9 (following 
page). These represent the yearly shock to the asset class returns 
that should be applied to assess the impact of the SSP-5 warming 
scenario on each asset class.

38 Carbon Risks and Financed Emissions of Financial Assets and Portfolios, Car-
bon Risk Management (CARIMA; funding code: 01LA1601).

Figure 7 Estimated reduction in market portfolio risk premium over the next 15 years from physical (blue hatched), transition (Black solid), and combined (grey 
hatched) climate risks under the SSP5 scenario. The left-hand graph shows the mean projected damage function from the integrated physical and transition risks 
model. The right-hand graph shows the lower 5th percentile of the projected distribution of damages from the model. (©2022 Conning, Inc.). 

Mean Scenario Severe Scenario
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Figure 8 Estimated impact of the SSP5 scenario on market returns of different 
asset classes over the next fifteen years. The stress values shown are the 
mean projected damage function from the integrated physical and transition 
risks model. (©2022 Conning, Inc.).

Figure 9 Estimated impact of the SSP5 scenario on market returns of different 
asset classes over the next fifteen years. The stress values shown are the low-
er 5th percentile of the projected damage function from the integrated physical 
and transition risks model. (©2022 Conning, Inc.).
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Analysis and Reporting Using the Model-Defined Stresses

Using the stresses derived in the last section, we employ the Cli-
mate Risk Analyzer39 and GEMS to quantify the impact on the fu-
ture market value of a portfolio of mortgage-backed securities, a 
fixed income portfolio (70% Treasuries, 30% Corporate Bonds), 
a diversified equity portfolio (US large cap index), and equity-ex-
posed sectors. Equity-exposed sectors comprise the five sectors 
with the largest defined stresses under the scenario. These sec-
tors are Energy, Materials, Real Estate, Utilities, and Industrials. 
Together, GEMS and the Climate Risk Analyzer simulate the fu-
ture market value of holdings in different asset classes under a 
current best-estimate scenario, with the distribution conditioned 
on a defined climate scenario from the model discussed below. 
The best-estimate or base scenario encompasses assumptions  
on market risk and returns broadly aligned with the last 20 years 
of experience.

With the mean and severe climate scenarios defined, the process 
that will be used to analyze each asset allocation is as follows:

1. Project the asset allocation market value distribution forward 
in time using a stochastic market risk model to capture a 

39 https://www.conning.com/software-and-services/climate-risk-analysis

“best estimate” of risk and return at future time horizons.

2. Run the same stochastic simulation of the market value, ad-
justing all returns with the climate scenario stress at each 
point in time using the Climate Risk Analyzer.

3. Define a quantity, called Excess Climate Risk (ECR), which 
is the difference between a measured statistic (e.g., mean 
or 1st percentile of the market value distribution) under the 
best estimate (from 1) and stressed (from 2) simulations.

4. Report the impact on current risk models captured by the 
Excess Climate Risk across several distribution statistics.

Figures 10 and 11 (following pages) respectively show the impact 
of the mean and severe SSP-5 scenarios on a starting allocation 
of USD 1 million for the four different asset allocations. We give 
the best estimate distribution at the 5-, 10-, 15-, and 30-year fu-
ture time horizon in blue and the same distribution conditioned 
on the SSP-5 climate scenario in green. The expected market 
value of the holdings at future time horizons under the best esti-
mate and the SSP-5 mean and severe scenarios are also shown 
in numerical form in Table 2.

Table 2 Expected (mean) market value of holdings in Mortgage-Backed Securities, Fixed Income, Diversified Equity, and Exposed Equity Sectors at the 5, 10, 15, 
and 30-year horizons. We assumed a starting market value of USD 1 Million for this analysis. Shown for each time horizon is the projected market value of holdings 
under the current best estimate of returns in each asset class, with the values based on the mean and lower 5th percentile (severe) of projected damage from the 
integrated model of physical and transition risks. (Prepared by Conning, Inc. Source: ©2022 Conning, Inc. using Conning Climate Risk Analyzer™ and GEMS® Eco-
nomic Scenario Generator with hypothetical portfolio). 

Expected Market  
Value Projections

5-year 10-year 15-year 30-year

Best Est. MV
SSP-5 MV 

Mean
SSP-5 MV 

Severe
Best Est. MV

SSP-5 MV 
Mean

SSP-5 MV 
Severe

Best Est. MV
SSP-5 MV 

Mean
SSP-5 MV 

Severe
Best Est. MV

SSP-5 MV 
Mean

SSP-5 MV 
Severe

Morgage-Backed 
Securities

951,053 920,242 876,560 1,093,851 989,690 852,192 1,325,820 1,089,109 806,459 2,490,813 1,202,826 386,753

Fixed Income 1,009,702 994,944 973,905 1,191,461 1,138,771 1,063,464 1,477,231 1,349,545 1,171,572 2,998,285 2,097,783 1,229,177

Equity Diversified 1,386,462 1,307,794 1,199,986 2,045,510 1,705,304 1,286,923 3,073,976 2,130,201 1,176,902 10,692,168 2,433,653 224,037

Equity-exposed 
Sectors 1,197,094 1,117,349 1,021,632 1,531,303 1,251,350 924,552 1,996,399 1,358,468 706,718 4,533,626 1,218,994 79,752

Discussions of Results

One of the significant criticisms of climate stress tests to date 
is that the impact at the short- and medium-term time horizons 
typically used for capital and strategic planning is too small. This 
statement leads to the false belief that climate risk is something 
that financial institutions need not worry about today. Our model, 
which explicitly includes a process to model the impact of tipping 

points, reveals why this view is a fallacy. Suppose we were to con-
sider only the results from the mean impact scenario shown in 
Figure 10. In that case, the impacts over the next five and ten 
years on expected risk and return are indeed relatively small or at 
least within the normal range of other market risks. However, con-
sidering the severe impact scenario in Figure 11, we see much 
more significant risks in the medium term. 
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Figure 10 Simulated distributions of the market value of holdings in Mortgage-Backed Securities, Fixed Income, Diversified Equity, and Exposed Equity Sectors at 
the 5-, 10-, 15-, and 30-year horizons. This analysis uses a starting market value of USD 1 Million. The stress values are the mean projected damage function from 
the integrated physical and transition risks model. (Prepared by Conning, Inc. Source: ©2022 Conning, Inc. using Conning Climate Risk Analyzer™ and GEMS® 
Economic Scenario Generator with hypothetical portfolio).

Conning and University of Maryland SSP-5 Mean Impact Scenario
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Figure 11 Simulated distributions of the market value of holdings in Mortgage-Backed Securities, Fixed Income, Diversified Equity, and Exposed Equity Sectors at 
the 5-, 10-,15-, and 30-year horizons. We assumed a starting market value of USD 1 Million for this analysis. The stress values are the lower 5th percentile projected 
damage function from the integrated physical and transition risks model. (Prepared by Conning, Inc. Source: ©2022 Conning, Inc. using Conning Climate Risk Ana-
lyzer™ and GEMS® Economic Scenario Generator with hypothetical portfolio).

Conning and University of Maryland SSP-5 Severe Impact Scenario



®

conning.com 

Quantifying the Financial 
Impacts of Climate Change

14

Considering real estate, which we see from Figures 8 and 9 is the 
asset class with the highest impact under this scenario, we can 
calculate that, under the mean scenario, the model implies a re-
duction or shock to market returns of -8.3% cumulatively over the 
next five years and -25.7% cumulatively over the next ten years. 
However, under the severe scenario, the impact on this asset 
class at the 5th percentile level of the simulated damage function 
might be as high as -20.5% and -64.9% cumulatively over the next 
5 and 10 years, respectively.

Considering the expected market value projections in Table 2, 
we can see the magnitude of the impacts more precisely. For in-
stance, our best estimate of the market value of an initial USD 
1,000,000 allocation to mortgage-backed securities in ten years 
is USD 1,093,851. However, this cumulative +9.4% return (= 100 
x 1,093,851 / 1,000,000 - 1) under the defined scenarios con-
verts to a 1% loss in the mean SSP-5 scenario (= 100 x 989,690 
/ 1,000,000 - 1) and could potentially exceed a loss of 14.8% 
under the severe scenario (=100 x 852,192 / 1,000,000 - 1). 
It is interesting to note that this is broadly aligned with the con-
clusions of other independent studies40. The inclusion of a jump 
process parameterized to replicate models of tipping point dam-
age can give a much more complete view of the climate risks to 
the financial system, encompassing severe case outcomes and 
the average or expected path. By applying an extreme climate 
scenario to the current risk and return models, it is possible to 
understand the impact on the distribution of market returns and 
ultimately measure market Value-at-Risk conditioned on the cli-
mate scenario. The Excess Climate Risk—the difference in a met-
ric under the best estimate and stressed climate scenario—also 
gives a useful and comparable metric of the scenario’s effect, 
which is less sensitive to each organization’s assumptions of fu-
ture expected returns than VaR alone. For instance, the excess 
risk of fixed income securities at the 10-year horizon is given by 
$1,191,461 - $1,063,464 = $127,997, reflecting the expected 
loss for this asset class relative to the current best estimate in the 
instance that the severe scenario plays out.

The equity-exposed sectors are particularly affected by transition 
risks. However, their operations and cost-base may also be ad-
versely affected by the physical impacts of climate change. For 
this asset class, we see that under the mean SSP-5 scenario, 
there is still scope to make a positive nominal return on the ini-
tial $1 million investment, albeit at a significantly reduced level 
over the entire thirty-year horizon considered. Under the severe 
scenario, however, where physical impacts lead to policy actions 
that increase the cost of carbon, losses start to accrue shortly 
after the five-year investment horizon. By the ten-year horizon, the 
best-estimate expected cumulative return of 53.1% becomes a 
loss of 7.5% under this severe scenario. Within thirty years, the 
investment is effectively gone. This result assumes that the in-
vestor holds the allocation and that the firms do not themselves 

40 Unpriced costs of flooding: An emerging risk for homeowners and lenders By 
David D. Evans, Leighton A. Hunley, and Brandon Katz (KatRisk LLC), 28 Jan-
uary 2022. In this paper, the high-risk scenario implied MBS credit losses of 
$72.1bn from an outstanding pool of $7.9tln. Over a 10-year horizon this would 
yield (1+0.009)10-1=-9.5% compounded loss.

restructure and diversify. Given these assumptions, the losses 
calculated would seem reasonable at longer horizons when con-
sidering the potential for many players in these sectors to become 
obsolete and accumulate stranded assets. This result further in-
dicates the need for financial institutions to consider future man-
agement actions today and assess risk under a range of dynamic 
balance sheet options.

Concluding Remarks
The demand from regulators for insurance and pension firms to 
perform and report on climate risks to the investment side of the 
balance sheet continues to gather pace. However, understanding 
the potential impact of these risks at the short- and medium-term 
horizons that are relevant to risk management and strategic plan-
ning has been hampered by the long-term nature of regulatory ex-
ercises to date. In many cases, organizations are unable to define 
and explore the range of possible outcomes that a particular level 
of global warming might engender because of the complexity and 
high knowledge barrier required to implement a model of climate 
risk. These difficulties are exacerbated because current climate 
stress tests are dependent on climate model and IAM outputs 
where empirical linkages between physical outputs (e.g., green-
house gas emissions) and economic and financial factors are 
not yet well-established. Further, the climate economics models 
available embed significant uncertainty in parameter estimates 
and do not include the possibility of high-impact low-probability 
events brought about by tipping points. 

In this paper we have presented a model that integrates financial 
damage assessments for physical and transitions risks and have 
used it to generate stress tests for a range of asset classes. We 
have focused on the five- to ten-year horizon, which is more com-
patible with the ORSA and other reporting requirements than the 
current decades-long scenarios proposed by many organizations 
to date. The model embeds a simplified form of more complex 
models and has parameters that are physically interpretable, 
which is key to setting parameter values for future events which 
are unprecedented in the historical record. This is also important 
if the models are to be adapted in response to local assets and 
new climate-related scientific and corporate information. 

Although the model has some limitations, as do all models, the 
current methodology addresses many of the criticisms of climate 
stress testing exercises to date. These criticisms (cited in several 
of the references in this paper)41 include; 

• the scenarios are not severe enough,

• models do not account for low-probability high-impact cli-
mate-related events such as tipping points,

• models do not consider the interaction of physical and tran-
sition risks, and

• models lack geophysical basis and transparency in the defin-
ing methodology.

41 See, for example, Dietz. S., 2021 op. cit., Palmer, T. 2019 op. cit., Pindyk, 2017. 
op. cit, and Folini, D. 2021 op. cit.
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Model output and recommended investment strategies and portfolios are used to illustrate Conning’s approach to insurance asset management. These were developed using publicly available data. It 
is not intended that any recommendations be implemented without preparing an updated strategic asset allocation analysis, incorporating private company information.

Our approach has the following innovative features: 

1. We model physical risk as a driver of transition risk through 
increases in the cost of carbon. This increase is proportional 
to the physical damages incurred.

2. The stochastic aspect of the damage function incorporates 
the uncertainty not captured in deterministic damage 
functions.

3. The approach includes a jump process in the physical dam-
age function. This is highly significant in that it models the 
possible impact of climate tipping points with a geophysical 
basis. The effects on some asset classes described earlier 
show the significance of this feature.

4. The model requires only a scenario of increasing tempera-
ture anomalies. Such scenarios would typically come from 
an openly available source such as the Shared Socioeco-
nomic Pathways. This approach simplifies defining a climate 
scenario and requires no “second-guessing” of what govern-
ments might do in the future regarding the cost of carbon. 

5. Users can explore different assumptions by changing model 
parameters and selecting values based on current data, 
experience, and expert judgment, and they can investigate 
the sensitivity of financial damages to particular inputs (e.g., 
changes in public tolerance to physical risk through the 
threshold parameter, τ).

We used this model to generate implied damages as a fraction of 
GDP and then cascaded these down to individual asset classes. 
This process enabled us to define stresses to asset returns under 
the SSP-5 temperature increase scenario. We have also pre-
sented some analyses based on these stresses using the Climate 
Risk Analyzer.

In conclusion, our model will be highly effective in providing fi-
nancial institutions and regulators with an executable framework 
to incorporate new information about the increasing risks from 
extreme weather and climate tipping points that may materialize 
in the next five to ten years.

Bio Summaries
Robert F. Brammer has a Ph.D. in mathematics from the Uni-
versity of Maryland. He is an Adjunct Research Professor in the 
Department of Finance and the Department of Atmospheric and 
Oceanic Science at the University of Maryland. Additionally, he is 
a Fellow of the American Meteorological Society and is the Chair 
of the Cleantech and Climate Change Committee of the American 
Bar Association.

Matthew Lightwood, Ph.D., is responsible for quantitative mod-
eling and providing technical expertise to support prospective 
and new clients using the GEMS® Economic Scenario Generator 
and leads product management of the Climate Risk Analyzer™ 
software for Conning. Before joining Conning in 2010, he was a 
Senior Risk Consultant, where he was responsible for financial 
modeling, managing, and implementing large professional ser-
vices projects for financial clients. Matthew is a graduate of the 
University of Manchester and University College London, where 
he earned a BSC (HONS) in Physics with Astrophysics and a Ph.D. 
in High Energy Particle Physics.

Clifford Rossi, Ph.D., is a Professor-of-the-Practice and Execu-
tive-in-Residence at the Robert H. Smith School of Business, Uni-
versity of Maryland. Before joining academia, he spent 25-plus 
years in the financial sector as a C-level risk executive at several 
top financial institutions and a federal-banking regulator. He has 
a Ph.D. in Financial Economics from Cornell University.


